Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Elife ; 122023 04 04.
Article in English | MEDLINE | ID: covidwho-2273134

ABSTRACT

The relocation and reconstruction of health care resources and systems during the coronavirus disease 2019 (COVID-19) pandemic may have affected cancer care. An umbrella review was undertaken to summarize the findings from systematic reviews on impact of the COVID-19 pandemic on cancer treatment modification, delays, and cancellations; delays or cancellations in screening and diagnosis; psychosocial well-being, financial distress, and use of telemedicine as well as on other aspects of cancer care. Bibliographic databases were searched for relevant systematic reviews with or without meta-analysis published before November 29th, 2022. Abstract, full- text screening, and data extraction were performed by two independent reviewers. AMSTAR-2 was used for critical appraisal of included systematic reviews. Fifty-one systematic reviews were included in our analysis. Most reviews were based on observational studies judged to be at medium and high risk of bias. Only two reviews had high or moderate scores based on AMSTAR-2. Findings suggest treatment modifications in cancer care during the pandemic versus the pre-pandemic period were based on low level of evidence. Different degrees of delays and cancellations in cancer treatment, screening, and diagnosis were observed, with low- and- middle- income countries and countries that implemented lockdowns being disproportionally affected. A shift from in-person appointments to telemedicine use was observed, but utility of telemedicine, challenges in implementation and cost-effectiveness in cancer care were little explored. Evidence was consistent in suggesting psychosocial well-being of patients with cancer deteriorated, and cancer patients experienced financial distress, albeit results were in general not compared to pre-pandemic levels. Impact of cancer care disruption during the pandemic on cancer prognosis was little explored. In conclusion, substantial but heterogenous impact of COVID-19 pandemic on cancer care has been observed.


The onset of the COVID-19 pandemic disrupted many aspects of human life, not least healthcare. As resources were redistributed towards the crisis, social isolation rules also limited access to medical professionals. In particular, these measures may have affected many aspects of cancer care, such as early detection or treatment. Many studies have aimed to capture the impact of these changes, but most have been observational, with researchers recording events without trying to impose a controlled design. These investigations also often faced limitations such as small sample sizes, or only focusing on one aspect of cancer care. Systemic reviews, which synthetize and assess existing research on a topic, have helped to bypass these constraints. However, they are themselves not devoid of biases. Overall, a clear, unified picture of the impact of COVID-19 on cancer care is yet to emerge. In response, Muka et al. carried an umbrella analysis of 51 systematic reviews on this topic. They used a well-known critical appraisal tool to assess the methodological rigor of each of these studies, while also summarising their findings. This work aimed to capture many aspects of the patients' experience, from diagnosis to treatment and the financial, psychological, physical and social impact of the disease. The results confirmed that the pandemic had a substantial impact on cancer care, including delays in screening, diagnosis and treatment. Throughout this period cancer patients experienced increased rates of depression, post-traumatic stress and fear of their cancer progressing. The long-term consequences of these disruptions remain to be uncovered. However, Muka et al. also showed that, overall, these conclusions rely on low-quality studies which may have introduced unaccountable biases. In addition, their review highlights that most of the data currently available has been collected in high- and middle-income countries, with evidence lacking from regions of the world with more limited resources. In the short-term, these results indicate that interventions may be needed to mitigate the negative impact of the pandemic on cancer care; in the long-term, they also demonstrate the importance of rigorous systematic reviews in guiding decision making. By shining a light on the ripple effects of certain decisions about healthcare resources, this work could also help to shape the response to future pandemics.


Subject(s)
COVID-19 , Neoplasms , Humans , Communicable Disease Control , COVID-19/epidemiology , Delivery of Health Care , Neoplasms/epidemiology , Neoplasms/prevention & control , Pandemics/prevention & control , Systematic Reviews as Topic
2.
Eur J Epidemiol ; 38(4): 355-372, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2253397

ABSTRACT

Current evidence on COVID-19 prognostic models is inconsistent and clinical applicability remains controversial. We performed a systematic review to summarize and critically appraise the available studies that have developed, assessed and/or validated prognostic models of COVID-19 predicting health outcomes. We searched six bibliographic databases to identify published articles that investigated univariable and multivariable prognostic models predicting adverse outcomes in adult COVID-19 patients, including intensive care unit (ICU) admission, intubation, high-flow nasal therapy (HFNT), extracorporeal membrane oxygenation (ECMO) and mortality. We identified and assessed 314 eligible articles from more than 40 countries, with 152 of these studies presenting mortality, 66 progression to severe or critical illness, 35 mortality and ICU admission combined, 17 ICU admission only, while the remaining 44 studies reported prediction models for mechanical ventilation (MV) or a combination of multiple outcomes. The sample size of included studies varied from 11 to 7,704,171 participants, with a mean age ranging from 18 to 93 years. There were 353 prognostic models investigated, with area under the curve (AUC) ranging from 0.44 to 0.99. A great proportion of studies (61.5%, 193 out of 314) performed internal or external validation or replication. In 312 (99.4%) studies, prognostic models were reported to be at high risk of bias due to uncertainties and challenges surrounding methodological rigor, sampling, handling of missing data, failure to deal with overfitting and heterogeneous definitions of COVID-19 and severity outcomes. While several clinical prognostic models for COVID-19 have been described in the literature, they are limited in generalizability and/or applicability due to deficiencies in addressing fundamental statistical and methodological concerns. Future large, multi-centric and well-designed prognostic prospective studies are needed to clarify remaining uncertainties.


Subject(s)
COVID-19 , Adult , Humans , Adolescent , Young Adult , Middle Aged , Aged , Aged, 80 and over , Prognosis , Critical Care , Intensive Care Units , Hospitalization
3.
J Clin Med ; 11(14)2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1938857

ABSTRACT

Not all evidence is equal. Evidence-based public health and medicine emanate from the principle that there is a hierarchy of evidence, with systematic reviews and meta-analyses (SRMAs) being at the top, as the highest level of evidence. Despite this, it is common in literature to find SRMAs with methodological issues that can distort the results and can thus have serious public health or clinical implications. During the Coronavirus Disease 2019 (COVID-19) pandemic, the importance of evidence and the way in which evidence was produced was stress tested and revealed a wide array of methodological biases that might have led to misleading conclusions and recommendations. We provide a critical examination of methodological biases in selected SRMAs on COVID-19, which have been widely used to guide or justify some pharmaceutical and nonpharmaceutical interventions with high public health and clinical significance, such as mask wearing, asymptomatic transmission, and ivermectin. Through these selected examples, we highlight the need to address biases related to the methodological quality and relevance of study designs and effect size computations and considerations for critical appraisal of available data in the evidence synthesis process for better quality evidence. Such considerations help researchers and decision makers avoid misleading conclusions, while encouraging the provision of the best policy recommendations for individual and public health.

4.
Am J Epidemiol ; 190(1): 161-175, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1010326

ABSTRACT

Health-care workers (HCWs) are at the frontline of response to coronavirus disease 2019 (COVID-19), being at a higher risk of acquiring the disease and, subsequently, exposing patients and others. Searches of 8 bibliographic databases were performed to systematically review the evidence on the prevalence, risk factors, clinical characteristics, and prognosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among HCWs. A total of 97 studies (all published in 2020) met the inclusion criteria. The estimated prevalence of SARS-CoV-2 infection from HCWs' samples, using reverse transcription-polymerase chain reaction and the presence of antibodies, was 11% (95% confidence interval (CI): 7, 15) and 7% (95% CI: 4, 11), respectively. The most frequently affected personnel were nurses (48%, 95% CI: 41, 56), whereas most of the COVID-19-positive medical personnel were working in hospital nonemergency wards during screening (43%, 95% CI: 28, 59). Anosmia, fever, and myalgia were the only symptoms associated with HCW SARS-CoV-2 positivity. Among HCWs positive for COVID-19 by reverse transcription-polymerase chain reaction, 40% (95% CI: 17, 65) were asymptomatic at time of diagnosis. Finally, severe clinical complications developed in 5% (95% CI: 3, 8) of the COVID-19-positive HCWs, and 0.5% (95% CI: 0.02, 1.3) died. Health-care workers suffer a significant burden from COVID-19, with those working in hospital nonemergency wards and nurses being the most commonly infected personnel.


Subject(s)
COVID-19/epidemiology , Health Personnel/statistics & numerical data , Global Health , Humans , Prevalence , Risk Factors , SARS-CoV-2
6.
Eur J Epidemiol ; 35(8): 763-773, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-725658

ABSTRACT

Iron metabolism and anemia may play an important role in multiple organ dysfunction syndrome in Coronavirus disease 2019 (COVID-19). We conducted a systematic review and meta-analysis to evaluate biomarkers of anemia and iron metabolism (hemoglobin, ferritin, transferrin, soluble transferrin receptor, hepcidin, haptoglobin, unsaturated iron-binding capacity, erythropoietin, free erythrocyte protoporphyrine, and erythrocyte indices) in patients diagnosed with COVID-19, and explored their prognostic value. Six bibliographic databases were searched up to August 3rd 2020. We included 189 unique studies, with data from 57,563 COVID-19 patients. Pooled mean hemoglobin and ferritin levels in COVID-19 patients across all ages were 129.7 g/L (95% Confidence Interval (CI), 128.51; 130.88) and 777.33 ng/mL (95% CI, 701.33; 852.77), respectively. Hemoglobin levels were lower with older age, higher percentage of subjects with diabetes, hypertension and overall comorbidities, and admitted to intensive care. Ferritin level increased with older age, increasing proportion of hypertensive study participants, and increasing proportion of mortality. Compared to moderate cases, severe COVID-19 cases had lower hemoglobin [weighted mean difference (WMD), - 4.08 g/L (95% CI - 5.12; - 3.05)] and red blood cell count [WMD, - 0.16 × 1012 /L (95% CI - 0.31; - 0.014)], and higher ferritin [WMD, - 473.25 ng/mL (95% CI 382.52; 563.98)] and red cell distribution width [WMD, 1.82% (95% CI 0.10; 3.55)]. A significant difference in mean ferritin levels of 606.37 ng/mL (95% CI 461.86; 750.88) was found between survivors and non-survivors, but not in hemoglobin levels. Future studies should explore the impact of iron metabolism and anemia in the pathophysiology, prognosis, and treatment of COVID-19.


Subject(s)
Anemia/diagnosis , Coronavirus Infections , Coronavirus/metabolism , Iron/metabolism , Pandemics , Pneumonia, Viral , Betacoronavirus , Biomarkers/analysis , Biomarkers/blood , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Erythropoietin , Ferritins/blood , Hemoglobins/analysis , Hemoglobins/metabolism , Hepcidins/blood , Hepcidins/metabolism , Humans , Iron/blood , Pneumonia, Viral/epidemiology , Receptors, Transferrin/blood , SARS-CoV-2 , Transferrin/analysis , Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL